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Scholars from a variety of backgrounds – economists, sociologists, strategists, and students of 
technology management – have sought a better understanding of why some knowledge 
disperses widely while other knowledge does not. In this quest, some researchers have 
focused on the characteristics of the knowledge itself (e.g., Polanyi, 1966; Reed and 
DeFillippi, 1990; Zander and Kogut, 1995) while others have emphasized the social networks 
that constrain and enable the flow of knowledge (e.g., Coleman et al., 1957; Davis and 
Greve, 1997). This chapter examines the interplay between these two factors. 

Specifically, we consider how the complexity of knowledge and the density of social 
relations jointly influence the movement of knowledge. Imagine a social network composed 
of patches of dense connections with sparse interstices between them. The dense patches 
might reflect firms, for instance, or geographic regions or technical communities. When does 
knowledge diffuse within these dense patches circumscribed by social boundaries but not 
beyond them? Synthesizing social network theory with a view of knowledge transfer as a 
search process, we argue that knowledge inequality across social boundaries should reach its 
peak when the underlying knowledge is of moderate complexity.1 To test this hypothesis, we 
analyze patent data and compare citation rates across three types of social boundaries: within 
versus outside the firm, geographically near to versus far from the inventor, and internal 
versus external to the technological class. In all three cases, the disparity in knowledge 
diffusion across these borders is greatest for knowledge of an intermediate level of 
complexity. 
 

THE TRANSFER OF COMPLEX KNOWLEDGE 
 

Our hypotheses build on two themes in the literature. First, the transfer of knowledge 
from one party to another typically requires effort on the part of the recipient to fill gaps in 
the transmitted knowledge and to correct transmission errors. The acquisition of knowledge 
therefore is best seen not as the receipt of a complete, well-packaged gift, but rather as a 
search process. Second, social networks, and consequently the social boundaries that shape 
them, critically influence that search process. 
 

                                                 
1 This version describes the intuition underlying our theoretical model and reports novel empirical results. For 
those interested in a more detailed description of the theoretical model, please see Rivkin (2001) and Sorenson, 
Rivkin and Fleming (2004). 



Knowledge receipt as search 
Following the lead of evolutionary economists (Nelson and Winter, 1982), we think of a 

unit of knowledge as analogous to a recipe. The list of ‘ingredients’ might include both 
physical components and processes. The recipe further explains how to combine these 
components and processes – in what order, in which proportions, under what circumstances – 
to achieve a desired end. Viewing knowledge as a recipe leads naturally to thinking of 
innovation as a search for new recipes. Following a long tradition – beginning at least as 
early as Schumpeter (1939) – we explicitly model innovation as a search process; inventors 
explore the space of possible combinations of ingredients (i.e. recipes) for new and better 
alternatives. In discussing this process, we adopt the idea of a fitness ‘landscape’ as a 
metaphor for the characteristics of the search space. Innovators search these landscapes for 
peaks and plateaus, which correspond to good recipes, useful inventions, and profitable 
strategies. 

Once a useful innovation has been discovered, transferring its recipe, even between 
cooperative actors, can fail for at least two reasons: First, the recipient usually does not fully 
understand the original recipe, as a result of imperfections in the transfer process. She must 
therefore begin a search for the missing information and to correct the errors in her 
(imperfect) copy of the recipe. Second, the local ingredients and the experience of the 
recipient rarely match those of the sender; recipients may therefore need to adapt the original 
recipe to their own context. Knowledge recipients do not act as passive beneficiaries; they 
actively search, recreate, and build upon the original recipes. 

In this process, the transfer of certain types of recipes is particularly difficult. For 
instance, knowledge characterized by causal ambiguity (Lippman and Rumelt, 1982), a high 
degree of tacitness (Polanyi, 1966), or difficult codification (Zander and Kogut, 1995) may 
resist transfer because any communication of such recipes proceeds only with many and large 
gaps. Our focus, however, is on the informational complexity of transferred knowledge. We 
consider a piece of knowledge complex if it comprises many elements that interact richly 
(Simon, 1962), and we pay special attention to the intensity of interdependence among the 
ingredients in a recipe.  

To connect the degree of informational complexity to the characteristics of the space that 
inventors search, we use Kauffman’s NK model (Kauffman, 1993; cf. Frenken and Nuvolari, 
2004). N denotes the number of (binary) elements in a system while K represents the degree 
to which these components interact in determining the fitness of a particular configuration of 
components. In our context, N is the number of ingredients used in a recipe, and K is the 
richness of the interactions between those ingredients. 

To understand better the way in which the model relates interdependence to the search 
process, consider two examples with N = 3. Fig.1 depicts a fitness landscape for a recipe with 
no interdependence between its components. Each vertex represents a different potential 
configuration; the arrows connecting them show paths toward higher fitness levels. When K = 
0, Kauffman randomly assigns a fitness from the uniform unit distribution to each value (0 or 
1) of each element. The overall fitness value for a particular configuration is the average of 
each element’s fitness contribution. As one can see, any starting point on this landscape leads 
to the unique optimum (011).  

Fig. 2, on the other hand, illustrates an example with N = 2. The value of the fitness 
contribution for each component then depends not just on its value but also on the values of 
two other components. Each component therefore can contribute any of eight (2 × 2 × 2) 
different fitness levels. Kauffman again randomly assigns these values from the uniform unit 
distribution. Even in this simple example, one can see that interdependence complicates 



search; depending on where one begins, an agent using a simple hill-climbing algorithm 
could arrive at either the global maximum (101) or a local one (000). 

 
INSERT FIGS 1 & 2 ABOUT HERE 

 
Complex knowledge resists transfer by making it difficult for a recipient to fill 

transmission gaps. On the landscapes depicted, a gap is equivalent to not knowing the correct 
value for the global optimum of one of the three elements. Interdependence produces two 
effects that undermine the recipient’s attempts to regenerate the original recipe (i.e. identify 
the optimum). First, small errors in transmission cause large problems when ingredients cross 
couple in a rich manner. Second, interdependence leads to a proliferation of “local peaks.” 
These peaks undermine improvement through incremental search because changing any 
single element degrades the quality of the outcome (Kauffman, 1993). As a result, searchers 
frequently find themselves trapped on local peaks (i.e. inferior recipes) when faced with high 
interdependence. 
 

Complexity and access to a template 
Success in acquiring and employing complex knowledge depends crucially on access to 

the original success, which serves as a template (Nelson and Winter, 1982: 119-120; Winter, 
1995). For reasons considered below, individuals vary in their degree of access to the 
template. Superior access facilitates the receipt of knowledge by allowing the recipient to 
commence search with fewer errors and by permitting him to solicit advice from the source 
during the search process.  Consider two actors, both attempting to assimilate a valuable 
piece of knowledge but who differ in their access to the template. The first has superior, 
though still imperfect, access to and understanding of the original, successful recipe. The 
second has far poorer access. How valuable is the first actor’s superior access to the template 
during the search process? We contend that the value depends on the complexity of the 
knowledge being transferred. 

Suppose first that the ingredients used in the recipe do not interact (i.e. K = 0). In this 
situation, the first actor’s access to the template does not produce a persistent advantage. 
Through routine, incremental search, the second actor can reconstruct the recipe. Few local 
peaks threaten to trap the poorly informed recipient. As a result, both actors eventually fare 
equally well; search on the part of a recipient can easily substitute for high-fidelity 
transmission.  

Next consider knowledge with an intermediate degree of interdependence. Local peaks 
now appear, but they remain relatively few in number. The well-informed actor begins her 
search near, but not precisely at, the original optimal set of ingredients. Through incremental 
search, she can find the proper combination of ingredients. The second actor, who begins 
search farther from the target and receives less guidance about the direction in which to 
explore, more likely becomes ensnared on some local peak, away from and inferior to the 
original success. Here superior template access gives the first actor an advantage the second 
cannot recreate through search. 

Finally, imagine a piece of maximally interdependent knowledge (i.e. K = N – 1): 
ingredients depend on one another in an extremely delicate way. Local peaks now pervade 
the landscape and neither actor’s incremental search will likely build on the original 
knowledge with any success. The first actor’s superior access to the template thus has little 
value beyond the second’s inferior access. 

Taken together, these arguments imply that the advantage of superior but imperfect 
access to the template reaches its peak at moderate levels of interdependence between 



knowledge components (Rivkin, 2001, develops this argument further, with the aid of 
simulations). 
 

Social boundaries and template access 
Access to the template depends on the distribution of social relations, which provide the 

channels through which valuable information flows (Hägerstrand, 1953; Coleman et al., 
1957). These social relations do not link actors at random. Rather, sociologists have 
consistently noted and demonstrated that networks concentrate within the boundaries of 
communities and organizations. Our study tests the salience of three types of social 
boundaries – organizational memberships, geographic regions, and technological 
communities – in structuring social networks, and concomitantly influencing the flow of 
knowledge. 

Consider organizational boundaries first. A firm attempting to replicate and build on its 
own prior success has better access to its knowledge than would an outside imitator, both 
because fellow members of an organization share codes, specialized languages, and beliefs 
that facilitate high-fidelity transmission (Arrow, 1974) and because strong interpersonal ties 
and dense social networks inside a firm provide access to the template (Granovetter, 1985). 
As argued above, the value of this access peaks for transmitting knowledge of intermediate 
complexity: 

Hypothesis 1: The advantage in receiving and applying knowledge that members of 
the same firm have over members of different firms reaches its maximum for 
knowledge of intermediate interdependence. 

In other words, the insider’s advantage over the outsider has an inverted U-shaped relation to 
the interdependence of the knowledge. 

Actors belonging to the same geographic unit (e.g., city, country or state) as the innovator 
also have superior access to the template. The geographic concentration of social relations 
reflects a variety of factors: the greater odds that individuals in close proximity encounter one 
another (Festinger et al., 1950), the high costs of maintaining distant ties (Zipf, 1949; Boalt 
and Janson, 1957), and the prevalence of local cultures (Benedict, 1934). We therefore expect 
that actors physically close to a source of knowledge have better access to it: 

Hypothesis 2: A nearby knowledge recipient’s advantage in receiving and applying 
knowledge over a distant recipient peaks for knowledge of intermediate 
interdependence. 
 
To the extent that networks localize geographically, even within a firm, organizations find 

it difficult to diffuse knowledge beyond its point of origin. Within a firm, then, we expect 
simple knowledge to spread broadly and highly complex knowledge to remain isolated within 
a single team or department. Knowledge of moderate complexity, however, should spread 
within a firm to the edges of a facility or locale, but not to geographically distant 
installations: 

Hypothesis 3: Within a firm, a nearby knowledge recipient’s advantage in receiving 
and applying knowledge over a distant recipient reaches its maximum for knowledge 
of intermediate interdependence. 

 
An analogous argument applies to technological communities (also called communities of 

practice, defined in terms of cognitive proximity). Actors who work in the same 
technological domain as an inventor have superior access to the template. Universities, trade 
associations, professional societies, industry consortia, and work experience foster dense 



social connections within such technological communities. These communities also develop 
common knowledge and communal languages that can facilitate knowledge transfer. 
Membership within a common technological community thus engenders superior access to 
the template, which should have its greatest impact when the target knowledge displays 
moderate interdependence: 

Hypothesis 4: The advantage in receiving and applying knowledge that a member of 
a technological community has over a non-member of the community reaches its 
maximum with knowledge of intermediate interdependence. 

 
EMPIRICAL CORROBORATION 

 
To test these hypotheses, we analyzed prior art citations to all U.S. utility patents granted 

in May and June of 1990 (n = 17,264). The data came from the Micro Patent database and 
NBER public access data on patents (Hall, et al., 2001). As in many previous studies, we 
view a prior art citation as evidence of knowledge diffusion. Our statistical approach involves 
estimating the likelihood that a focal patent receives a citation from a future patent as a 
function of several factors: the interdependence of the knowledge underlying the focal patent, 
the status of the citing patent’s inventor as an insider or outsider on some dimension with 
respect to the focal patent, the interaction of interdependence and insider/outsider status, and 
a set of control variables. The results of the estimation allow us to examine how the 
likelihood of insider citation compares to the likelihood of outsider citation and, crucially, 
whether the gap between the two probabilities peaks when the focal patent embodies 
moderately interdependent knowledge. 

Our unit of analysis is a patent dyad, one patent issued in May or June of 1990 and one 
issued later that may or may not cite the first. Hence our approach conceptually follows that 
of other studies of the likelihood of tie formation – in this case, the likelihood that a future 
patent builds on the knowledge embodied in one of our focal patents. Specifically, our 
analysis follows Sorenson and Stuart (2001) in adopting a case-control approach to analyzing 
the formation of ties. We begin by including all cases of future patents, from July 1990 to 
June 1996, that cite any of our 17,268 focal patents: 60,999 in total. Since these citations 
occur, the dependent variable for these cases takes a value of “1” to denote a realized citation. 
In addition, we pair each of the 17,268 focal patents with four future patents that do not cite it 
(but that could have), with the dependent variable set to zero. From this set of 130,071, we 
restrict our analysis to the dyads in which both inventors reside in the United States, leaving 
us with a set of 72,801 dyads. 

Interdependence: For each dyad, we measure the complexity of the knowledge in the 
focal patent, k, by observing the historical difficulty of recombining the elements that 
constitute it (Fleming and Sorenson, 2001). Though the metric involves intensive calculation, 
the intuition behind it is simple: a technology whose components have, in the past, been 
mixed and matched readily with a wide variety of other components has exhibited few 
sensitive interdependencies and receives a low value of k. The measure takes the subclasses 
identified in a patent as proxies for the underlying components (see Fleming and Sorenson, 
2004, for survey-based validation of the measure). 

We compute k in two stages. Equation 1 details our calculation of the ease of 
recombination, or inverse of interdependence, for each sub-class i used in patent j. We first 
identify every use of sub-class i on patents from 1980 to 1990. The denominator is simply the 
tally of the number of patents with a classification in sub-class i. To compute the numerator, 
we count the number of different sub-classes appearing with sub-class i on previous patents. 
Hence, our measure increases as a particular sub-class combines with a wider variety of 



technologies, controlling for the total number of applications. This term captures the ease of 
combining a particular technology.  
 

i
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To create our measure of interdependence for an entire patent, we invert the average of 

the ease of recombination scores for the sub-classes to which it belongs (equation 2). 
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Social boundaries: Three variables capture the insider/outsider status of the potential 

citing inventor with respect to the holder of a focal patent. The variables reflect membership 
in organizational, regional, and technical communities. Same assignee is set to one if two 
patents in a dyad share a common owner and is zero otherwise. Geographic proximity is 
equal to the natural log of the distance in miles between the first inventors listed on the two 
patents in a dyad multiplied by negative one (so that we expect larger values to increase the 
likelihood of citation). Same class is set to one if two patents belong to the same primary 
technological class – a proxy for shared membership in a community – and is zero otherwise. 
In all three cases, we test our hypotheses by interacting k and its square with the proxy for the 
density of social networks – whether due to firm boundaries, geographic proximity, or 
technological similarity. The benefits of social proximity should peak for inventions of 
moderate complexity. 

The regressions also include several control variables. Subclass overlap is the number of 
subclasses that the two patents in the dyad have in common divided by the number of 
subclass memberships for the (potentially) citing patent. An activity control estimates the 
typical number of citations received by a patent in the same technological areas as the focal 
patent (see Fleming and Sorenson, 2001). Recent technology is the average reference number 
of the patents listed as prior art, a measure of the closeness of the patent to the technological 
frontier. We also include counts of the number of backward patent citations and backward 
non-patent citations, the number of class memberships, and the number of subclass 
memberships for the focal patent. We report robust standard errors and correct for potential 
bias in logistic regression of rare events (King and Zeng, 2001). 
 

RESULTS 
 
The results appear in Table 1. Model 1 tests hypothesis 1 by interacting k and k2 with 

same assignee. As expected, membership within the same firm produces the greatest 
diffusion advantage over outsiders for knowledge of intermediate complexity, as evidenced 
by the positive coefficient on k x same assignee and the negative coefficient on k2 x same 
assignee. The interactions between geographic distance and interdependence in model 2 tests 
hypothesis 2, again showing strong support. Model 3 tests hypothesis 3 by re-estimating 
model 2, but only for dyads where both patents belong to the same firm. In essence it asks: 
Does geography still matter for knowledge diffusion within firms? In support of hypothesis 3, 
the results reveal that even within firm boundaries, social networks influence the flow of 
knowledge, with the greatest disparity between local diffusion and distant diffusion arising 
for knowledge of moderate interdependence. Model 4 tests the salience of technological 



communities. Once again, the estimates show strong support; the impact of technological 
community membership on citation probability peaks for intermediate k.  Model 5 includes 
all three measures of social proximity simultaneously and shows that each has an independent 
and significant effect when estimated together, in support of hypotheses 1, 2, and 4. 

As expected, the value of superior access to the template reaches a maximum for 
knowledge of moderate interdependence, regardless of whether the superior access comes 
from organizational membership, geographic proximity, or technological community 
membership. In addition to being significant, the effects have substantial economic import. 
For simple or highly complex knowledge, the insider has no greater likelihood than the 
outsider of attaining and building on the knowledge in a focal patent. For knowledge of 
moderate complexity at the gap-maximizing levels of k, a firm insider is 218% more likely 
than an outsider to transfer knowledge effectively; an inventor located in the same zip code is 
160% more likely to absorb the knowledge in a region than one at the average distance (~665 
miles); and a technological insider is 238% as likely as a technological outsider to build on 
knowledge in the class. 
 

DISCUSSION 
 

Our analyses considered the impact of superior access to some original knowledge on the 
likelihood of diffusion as a function of knowledge complexity, using three indicators of social 
proximity. All knowledge recipients, near and far, compete on equal footing when 
assimilating simple knowledge. Highly complex knowledge, on the other hand, equally 
resists diffusion to both classes of would-be recipients. For knowledge whose ingredients 
display a moderate degree of interdependence, however, superior but imperfect access to the 
template translates into better knowledge reproduction. Thus in our patent data, the largest 
gap between the ability of a close recipient to build on prior knowledge relative to the ability 
of a distant recipient arises when the cited patent involves moderate interdependence. 

Our findings speak to the question, when does inequality of knowledge arise across social 
borders? One might initially suspect that highly complex knowledge, the most difficult to 
reproduce, would create the greatest inequality. But this intuition ignores the fact that 
inequality in its sharpest form requires some diffusion: to create the most inequity across 
social boundaries, knowledge must creep up to the edge of the thick patch of connections in 
which it originated but not beyond. This phenomenon, we have argued, most likely occurs for 
moderately complex knowledge. Thus, for example, one might expect industries based on 
moderately complex knowledge to display especially wide intra-industry dispersion in long-
run financial returns.   

Our argument may also shed light on a conundrum of the literature on economic 
geography. Explanations for agglomeration based on information spillovers assume that 
membership in a local community allows firms to benefit from the knowledge developed by 
other firms in the region, but that firms outside the region are excluded from these benefits 
(e.g., Marshall, 1890; Arrow, 1962). What type of knowledge would have such a 
characteristic? The literature to date has focused on ‘tacit’ knowledge, but typically uses the 
term simply to refer to uncodified (as opposed to uncodifiable) knowledge (an endogenous 
outcome of firms’ decisions to invest in codification; Brökel, 2005). Our results, building on 
Kauffman’s NK model, point to a different (presumably more exogenous) dimension: 
informational complexity. Industries that rely on moderately complex knowledge might be 
especially likely to display geographic agglomeration (for empirical corroboration, see 
Sorenson, 2004). 



Our empirical results come from patent data alone, but the basic logic of our hypotheses 
applies to knowledge in general, not just the knowledge underlying inventions (cf. Wolter, 
2006, for a model based on interdependence in production). Hence, future research might 
usefully examine these dynamics across a wide range of applications – including 
organizational learning, the diffusion of management practices, knowledge management, and 
the sustainability of knowledge-based competitive advantage. 
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Table 1: Rare events logit models of the likelihood of a focal patent receiving a citation from 
a future patent 
 Model 1 Model 2 Model 3 

Only same 
assignee 

Model 4 Model 5 

k 1.687••• 
(.302) 

1.526••• 
(.307) 

4.821••• 
(.359) 

1.444••• 
(.321) 

1.070•• 
(.362) 

k2 -.892••• 
(.082) 

-.793••• 
(.074) 

-4.208••• 
(.117) 

-.704••• 
(.098) 

-.359•• 
(.107) 

k x same assignee 2.969••• 
(.515) 

   6.231••• 
(.555) 

k2 x same assignee -3.420••• 
(.203) 

   -9.851••• 
(.273) 

k x - ln (dist)  .835••• 
(.131) 

6.047••• 
(.213) 

 .885••• 
(.139) 

k2 x - ln (dist)  -.794••• 
(.044) 

-4.566••• 
(.074) 

 -1.025•• 
(.066) 

k x same class    3.019•• 
(1.146) 

5.733••• 
(1.032) 

k2 x same class    -1.396••• 
(.363) 

-5.409••• 
(.330) 

Same assignee .343 
(.280) 

.389 
(.276) 

 .432 
(.281) 

.172 
(.278) 

- Ln (dist) .499••• 
(.031) 

.428••• 
(.031) 

.500••• 
(.066) 

.499••• 
(.030) 

.354••• 
(.029) 

Same class 3.800••• 
(.306) 

3.663••• 
(.307) 

1.878••• 
(.394) 

3.837••• 
(.302) 

3.448••• 
(.299) 

Subclass overlap 4.230••• 
(.316) 

4.190••• 
(.317) 

3.767••• 
(.349) 

4.114••• 
(.316) 

4.150••• 
(.314) 

Activity control .393 
(.287) 

.389 
(.287) 

-.746•• 
(.248) 

.477 
(.388) 

.466 
(.289) 

Recent technology .122 
(.171) 

.195 
(.170) 

.010 
(.309) 

.096 
(.165) 

-.024 
(.151) 

Backward patent 
citations 

.002 
(.013) 

.013 
(.013) 

.025•• 
(.008) 

-.001 
(.014) 

-.002 
(.014) 

Backward non-patent 
citations 

.018•• 
(.006) 

.014• 
(.006) 

-.126••• 
(.037) 

.019•• 
(.005) 

.011• 
(.005) 

Number of classes .070 
(.140) 

.054 
(.140) 

.456 
(.249) 

.041 
(.138) 

.052 
(.137) 

Number of subclasses -.016 
(.045) 

-.021 
(.045) 

.170••• 
(.048) 

.001 
(.044) 

.010 
(.044) 

Constant -9.224••• 
(.714) 

-9.953••• 
(.703) 

-7.148••• 
(1.208) 

-9.206••• 
(.684) 

-9.162••• 
(.675) 

Log-likelihood -22,262.4 -22,261.4 -2,294.1 -22,255,9 -22,251.1 
N 72,801 72,801 6,497 72,801 72,801 
 
• p < .05; •• p < .01; ••• p < .001. Model 3 includes only those dyads for which same assignee = 1. 
 



 

 

Figure 1: Landscape without interdependence (N=3, K=0). This relatively correlated 
landscape has only one minimum and one maximum, 100 (0.40) and 011 (0.80), respectively. 
The component fitness contributions come from a uniform [0,1] distribution. 
 
 

 

Figure 2: Landscape with maximal interdependence (N=3, K=2). This relatively uncorrelated 
landscape has multiple local minima, 001(0.30) and 100 (0.37), and maxima, 000 (0.63) and 
101 (0.87). 
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